

Journal of Nonlinear Analysis and Optimization

Vol. 15, Issue. 1, No.15 : 2024

ISSN : 1906-9685

SOURCE CODE ERROR MANAGEMENT: THE ROLE OF EFFECTIVE

BUG REPORTING

#1Dr.PEDDI KISHOR, Associate Professor & HOD
#2NAVEEN KUMAR SHANIGARAPU, Associate Professor

#3MAHESH NAGAMALLA, Assistant Professor

Department of Computer Science and Engineering,

SREE CHAITANYA INSTITUTE OF TECHNOLOGICAL SCIENCES, KARIMNAGAR, TS.

ABSTRACT: The main focus of this job is to find, evaluate, and fix bugs in software. Setting up a way to

fix bugs after a system has been deployed is the main goal in order to find cost-effective ways to build and

run software systems. This method keeps an eye on the security of the program and creates a database for

information about software bugs. One web-based option that was made to meet this need is Bug Tracker.

Besides managing chores that need to be done after a deployment and testing software, Bug Tracker also

stores information about bugs. End users and testers can write down problems in Bug Tracker. Developers

can then look at the problems and fix them by running new versions of the program files. The Bug Tracker

system was built with PHP, HTML, JavaScript, and MySQL database tools. It was planned using the UML

and Overview models. Testing and reviewing Bug Tracker showed that it made software more reliable, cut

down on production costs, and made developers more productive. This essay shows how well actions after a

software release should be handled to make it more reliable and lower the cost of development.

Keywords: Software bugs, Bugs detection, Bugs analysis, Bugs fixing, Bugs tracker.

1. INTRODUCTION

On June 4, 1996, the first Ariane 5 launch failed.

The rocket swerved, broke apart, and exploded 40

seconds after launch at 3700 meters above ground.

A fundamental software error in the launcher's

Inertial Reference System caused this catastrophic

failure 30 seconds after liftoff, or 37 seconds after

the main engine started, erasing guidance and

altitude data. Software is essential to many

products and services in many industries.

Software-intensive systems include web-centric

corporate applications, wireless ad hoc networks,

automobile embedded systems, and phones. From

banking and communication to transportation and

healthcare, complex software-intensive systems

dominate our daily lives. Industry innovation and

performance depend on software technology

understanding.

However, many companies' software today is

unreliable and low-quality. Due to poor

communication between end users and

developers, software abandonment is prevalent.

This communication gap also makes it harder to

gather intelligent system user feedback because

the limited data collected lacks documentation.

Without a thorough software bug database, it's

hard to make smart software development process

improvements. Software development companies

use four methods to address stability and quality

issues. First, attract top talent to produce bug-free

software, but it's hard for one individual to create

a system that meets the needs of a wide range of

users and provide selection criteria. Instead of

starting from scratch, recycle existing programs.

Unfortunately, few companies have developed

reliable, adaptable software that can be shared

without large changes.

Another technique is high-level software

development. Convincing others of this approach's

benefits can be difficult due to system

2157 JNAO Vol. 15, Issue. 1, No.15 : 2024

performance concerns. Thus, the fourth and final

solution in this study provides post-deployment

software bug investigation. A bug-data repository

is built to improve software development, but this

strategy also reduces software faults and their

variation over time. Limited software

development statistics were our major issue. Small

enterprises with few developers make up Nigeria's

still-developing software industry, causing this

challenge. These developers often work outside

normal software development methods. Instead,

they focus on program execution and ignore

development activity logs.

2. LITERATURE REVIEW

Lee, J., & Kim, D. (2024). This study examines

current software issue identification methods

using machine learning, static and dynamic

analysis, and code review. The authors compare

the efficacy of numerous methods and apply them

to modern software development. Scalability, real-

time problem identification, and future

advancements are discussed. Later in the paper, a

method for adopting best practices is presented.

This document shows developers how to improve

software issue detection.

Singh, A., & Sharma, R. (2023). The objective of

automated testing in software bug discovery is

examined here. It shows how automation speeds

bug finding in huge codebases. The study

evaluates automated testing in numerous software

contexts. It examines how badly these techniques

spot complex, context-sensitive difficulties.

Results reveal that automated testing works well

for basic defects but requires more advanced

methods for complicated problems.

Zhang, Y., & Li, X. (2022). This detailed review

examines deep learning for software flaw

detection. The authors study CNNs and RNNs for

bug finding. Deep learning outperforms standard

bug detection methods in large and complicated

software systems, according to the report. We also

consider data labeling, training set quality, and

computing costs. The authors mention

unsupervised and transfer learning as promising

research fields. One considers useful commercial

and open-source software. Deep learning model

integration in real-time bug detection is suggested

at the end of the research.

Miller, A., & Watson, T. (2021). This detailed

review examines deep learning for software flaw

detection. The authors study CNNs and RNNs for

bug finding. Deep learning outperforms standard

bug detection methods in large and complicated

software systems, according to the report. We also

consider data labeling, training set quality, and

computing costs. The authors mention

unsupervised and transfer learning as promising

research fields. One considers useful commercial

and open-source software. Deep learning model

integration in real-time bug detection is suggested

at the end of the research.

Johnson, P., & Smith, J. (2021). This study examines

how AI affects software issue detection and

fixing. AI-based fixes like static analyzers and

automatic patching are examined. Using historical

data to anticipate bug sites with artificial

intelligence is being considered. Machine learning

methods that learn from prior corrections improve

forecasts over time are also examined in the paper.

The research proposes combining artificial

intelligence and traditional debugging methods

thanks to their benefits. We address AI-powered

solution scalability in large, complicated software

systems. The authors recommend studying

adaptive AI systems that self-optimize based on

project parameters.

Sutherland, M., & Thompson, K. (2021). This

study thoroughly reviews software engineering

automated problem fixes. The authors discuss

automated problem-finding and repair tools. They

are evaluated in multiple programming languages

and settings. The report also discusses false

positives, defect complexity, and human

supervision in automating the bug-fixing process.

Automation greatly decreases debugging time, but

the writers believe technology cannot yet replace

human competence. Debate surrounds automatic

bug-fixing technology improvements. The report

recommends more research on integrating AI and

ML into automated processes.

Wang, T., & Liu, S. (2021). The difficulties of

finding bugs in cloud-based software systems

dominate this essay. The authors discuss

distributed systems, scalability, and scenarios.

Cloud-specific bug detection methods include

2158 JNAO Vol. 15, Issue. 1, No.15 : 2024

automated monitoring, real-time analytics, and

error tracking. The research shows that cloud-

based systems need tools to regulate virtualized

environments and dynamic resource allocation.

Example cases demonstrate how these methods

are used in huge cloud systems. The authors

propose a bug detection system for cloud service

management. The report recommends more cloud-

based bug detection research in the conclusion.

Kumar, R., & Agarwal, P. (2020). The difficulties of

finding bugs in cloud-based software systems

dominate this essay. The authors discuss

distributed systems, scalability, and scenarios.

Cloud-specific bug detection methods include

automated monitoring, real-time analytics, and

error tracking. The research shows that cloud-

based systems need tools to regulate virtualized

environments and dynamic resource allocation.

Example cases demonstrate how these methods

are used in huge cloud systems. The authors

propose a bug detection system for cloud service

management. The report recommends more cloud-

based bug detection research in the conclusion.

Gonzalez, E., & Martin, J. (2020). This study

examines code complexity and software issue

detection. The authors use data to determine

difficulty frequency, cyclomatic complexity, and

lines of code. Complexity makes debugging

harder and raises the risk of undiscovered errors,

according to the report. Statistical methods assess

the relationship between complexity and issue

occurrence to determine which factors most affect

fault-prone programming. Automation is also

discussed in the article to govern complex code

structures. Software authors are advised to focus

code clarity to reduce errors.

Chavez, S., & Lopez, M. (2020).This study examines

modern software bug-fixing methods. From

manual inspection to machine learning-based

automated systems, the authors cover debugging

history. The research focuses on algorithms that

help engineers discover defect trends and suggest

solutions. It examines how AI and pattern

recognition might improve problem fixes. The

report also discusses predictive bug fixing, where

algorithms detect issues before they occur. The

difficulties of integrating these algorithms into

continuous integration pipelines are discussed.

The authors conclude that algorithms will evolve

to meet the needs of increasingly complex

software systems.

Patel, A., & Rao, S. (2020). This study focuses on

machine learning models for early bug discovery

in large software systems. The authors propose

using supervised learning techniques like Random

Forests and Gradient Boosting to predict defects

from historical data. They study data imbalance

and feature extraction from machine learning on

vast code bases. The work examines how

continuous integration systems might use these

models to predict bugs in real time. They realize

machine learning methods can improve early bug

detection. The research advises improving these

models using more advanced techniques.

Zhao, X., & Liu, C. (2020). The authors examine

static analysis methods to see how well they can

detect bugs without running the code. Static

analysis's early identification and ability to find

latent vulnerabilities that testing cannot reproduce

are discussed. Static analysis's false positives and

runtime error inability are also discussed in the

study. The authors suggest improving stationary

analytic procedures to reduce noise and increase

precision. Real-world project case studies

demonstrate static analysis's practicality. The

paper's conclusion suggests static analysis

improvements.

Gupta, S., & Verma, K. (2020). This study examines

static and dynamic bug-finding methods. The

authors compare the pros and cons of dynamic

and static analysis, emphasizing that dynamic

analysis is preferable for runtime mistakes and

static analysis for early problem detection. For

thorough bug discovery, hybrid static-dynamic

analysis methodologies are crucial. In addition to

time, cost, and accuracy, the writers discuss other

factors. They enable current software

development initiatives to use both

methodologies. The paper's conclusion suggests

improving both methods.

Tan, W., & Yang, H. (2020). This research examines

how machine learning can automate open-source

software issue fixes. The writers' models self-fix

regular coding problems based on earlier fixes.

They test these machine learning models in

GitHub and other open-source projects. Training

2159 JNAO Vol. 15, Issue. 1, No.15 : 2024

machine learning models on several codes with

varied quality and organization is discussed in the

study. The authors also explore automated bug-

fixing in open-source development. They

demonstrate how these tools can reduce hand

debugging and improve software stability.

Machine learning-based bug fixers are suggested

in the paper's conclusion.

Choi, H., & Lee, J. (2020). This study examines

code odors and software issues and recommends

combining code scent detection and bug-fixing.

Code smells often suggest hidden issues,

according to the authors. The study examines code

smell detection methods and their ability to

forecast error-prone code. These findings may

help developers proactively patch vulnerabilities,

according to the paper. The authors also discuss

automated code smell detection and refactoring.

Case studies show how this technique improves

software quality: The paper recommends more

research on automated issue fixes and code smell

detection.

3. SYSTEM DESIGN

ANALYSIS OF EXISTING SYSTEMS

A thorough examination of current bug

identification and analysis tools, techniques, and

approaches is needed. Manual bug reporting and

detection are still used in most systems, which is

time-consuming and error-prone. Automation

usually only covers basic testing; exploratory bug

finding is done manually. Project management

teams may not communicate well, resulting in

inadequate bug remedies. Modern systems

provide various obstacles to bug discovery,

analysis, and repair. These problems must be

understood to improve a system. One issue is that

human problem reporting and detection might

lead to inconsistent and inadequate bug data and

waste time. Software development teams may

miscommunicate, postpone, and miss bug-related

information. Many current systems lack full

testing automation, leaving important software

components uninspected and prone to errors that

may not be noticed until later in the development

cycle. Inappropriate monitoring and reporting

systems may hinder issue prioritization,

importance assessment, and bug remedy status.

Description of the proposed system

The proposed solution changes bug identification

and analysis to address current vulnerabilities and

challenges. It offers an automated, cooperative,

and efficient way to find, understand, and fix

software bugs. The proposed approach eliminates

software bugs and overcomes current system

flaws by merging new technologies and methods.

Realizing the limitations of the current bug

detection and analysis system and correcting them

with a well-planned solution is the first step to

improving it. Figures 1 depict system architecture.

Figure 1. System architectural design

Key components and features of the proposed

system

Performance of bug detection and analysis

systems depends on their features and

components. This section describes the proposed

system's core components and how it solves

software faults.

Bug tracking and management

The proposed solution uses a robust bug tracking

and management module. This aspect helps

document, categorize, and track software issues

throughout their lifespan.

Key features of this module include:

Issue tracking: A central location for tracking

and observing issues with complete backgrounds

and states.

Prioritization: Resources for classifying bugs by

importance should be prioritized to solve urgent

concerns.

Assignment: Responsibility and accountability

are simplified by assigning bugs to team

members.

Real-time updates: Bug corrections are updated

in real time for everybody involved.

Testing framework

2160 JNAO Vol. 15, Issue. 1, No.15 : 2024

Initial bug detection and investigation require

automation. The proposed system's advanced

automated testing framework has these features:

Regression testing: Regression testing

automatically tests software for newly discovered

development problems.

Test case management: Test case management

stores test cases and scripts for complete

coverage.

Continuous integration: A seamless

development process interface for automated

testing of every code change can help you.

Custom test suites: Create custom test suites for

projects or modules.

Real-time communication and collaboration

The development, quality assurance, and project

management teams must collaborate and

communicate to fix bugs. Features of the

recommended system include:

Discussion threads: A distinct discussion thread

for each problem breaks communication silences

and supports focused debates.

File sharing: System-wide log, file, and

screenshot for problem reports.

Collaborative workspaces: Collaborative

workplaces allow team members to solve

problems together.

Reporting and analytics

Data-driven decisions and bug landscape

comprehension require rigorous analytics and

reporting. Important features include:

Custom dashboards: Custom dashboards let

users visualize bug data trends and patterns.

Historical data analysis: historical bug data

analysis tools to find recurring issues and

development opportunities.

Export and sharing: Exporting reports gives

stakeholders insights.

Protect bug data privacy and confidentiality.

System features include:

Access control: Role-based access control restricts

sensitive bug data to authorized staff.

Data encryption: To prevent data breaches, data

is encrypted in transit and at rest.

Audit trails: Comprehensive audit trails of all

system actions and changes for compliance and

accountability.

Mobile accessibility

Being available on the go is crucial in a mobile

environment. Smartphone and tablet users can

report, monitor, and control issues using the

system's versatile online interfaces. Combining

these essential components and functionalities

creates a comprehensive issue detection and

analysis solution that helps development teams

improve software quality, communication, and

bug fixes. We examine this system's significance

and potential impact on software development in

the following sections.

SYSTEM IMPLEMENTATION

System implementation

System implementation builds fully functional

software systems from analysis and designs.

Selecting an application-specific programming

language is part of this approach. Before

implementation, sample or test data testing is

necessary to ensure the design can achieve its

goals. Unlike system analysis and design, system

implementation requires a high-level or low-level

programming language. Successfully compiled

source code produces a working application that

meets our design criteria.

Choice of programming language

This project's expertise guided programming

language choice. Many modules and components

of this system depend on these qualities, thus they

need a strong database management system to

regulate storage and server-side scripting. This is

a web-based application, thus a scripting language

that could execute all functions and work on the

server side for storage was crucial.

PHP was used for this project. The open-source

programming language PHP, often known as

"PHP: Hypertext Pre-processor," is used for

online applications and data processing. After

receiving a PHP script request from the server, the

script is processed to generate HTML code for the

web browser. PHP is open-source and runs on

many servers, including Apache.

PHP is better than other programming languages

for various reasons, including these.

Freedom from licensing restrictions: Since PHP

is open-source, it does not have licensing

restrictions like commercial software. Open-

source software users can modify, distribute, and

integrate it into several programs. Open-source

2161 JNAO Vol. 15, Issue. 1, No.15 : 2024

versions may have different licensing restrictions,

but users can usually customize the application.

Inclusive development: Development using PHP

teams is not confined to one organization. Anyone

who likes programming should donate to PHP

projects. Openness attracts different talent, which

improves job quality.

A database management system was needed to

manage program data. MySQL's interoperability

with Apache and PHP servers made it the

database management system of choice. PHP

scripts are run by a web server. So Apache 2.2.22

was picked. Apache was chosen due to its

popularity, cross-platform compatibility, and PHP

and MySQL database support.

HTML was largely used to design the program's

user interface, especially for page layout. HTML

guides Internet text formatting and presentation.

HTML commands are the foundation of web

sites, thus these instructions fit well in the

content.Since HTML is platform-independent,

machine choice has no impact on web page

presentation.

4. RESULTS

Figure2. Graphics user interface for user login

Figure 3. System home page

Figure 4. Inferface for adding projects for issue

fixing

Figure 5. Interface for adding ticket type, status

and priority

Figure 6. Interface for adding employee

Figure 7. Report interface on the projects under

research

2162 JNAO Vol. 15, Issue. 1, No.15 : 2024

Figure 8. Report interface on bugs

Figure 9. Report interface for info of experts who

track bugs

Figures 2, 3, 4, 5, and 6 illustrate the

recommended BugTracker sample implementation

input snapshot. Figure 4 shows the graphics user

interface for user login, Figure 5 shows the system

home page, Figure 4 shows the interface for

adding projects to handle issues, and Figures 7, 8,

and 9 show the proposed BugTracker's example

implementation output snapshot. Figure 9 shows

the report interface for investigated projects;

Figure 8 indicates difficulties; Figure 11 shows

flaw specialists.

DISCUSSIONS

Bug identification, analysis, and resolution were

used to evaluate the system's performance and

software quality. Practical software development

was used to test the system. Management and bug

fixing were simplified by the system. Based on

their competencies, staff were assigned bug-

related projects and tickets for evaluation. As

employees, developers and managers tested the

assigned bugs and submitted their reports, which

included the ticket name, project details, ticket

type (which indicates the bug type), description,

assigned personnel, status (such as "in progress,"

"open"), and priority.

The evaluation yielded major new insights. The

system simplified task and ticket creation and

distribution. With the right expertise, the

administrator can develop projects and assign

bugs to workers. Simplifying bug control ensured

the right people fixed the bugs. The system

efficiently compiled essential information from

developer and manager bug reports. Every bug

was fully discussed in the reports, along with a

brief explanation of the issue, the project, and the

people in charge. Ticket type, status, and priority

enabled bug tracking and prioritization.

The technology also improved analysis and bug

testing, according to the report. Developers and

managers, who could discover causes and provide

detailed analysis reports, examined the bugs. This

helps create effective bug-fixing procedures and

better understand the issues. The examination also

showed how technology increased teamwork and

communication. The solution ensured that all

parties had access to bug information and made

cooperation possible by centralizing problem

management. This improved cooperation and

problem-solving speed.

Comparative analysis was used to evaluate and

interpret the bug management system's results,

allowing a better understanding of their

consequences and relevance and investigating

their impact on bug resolution and software

quality. The solution's ability to simplify the

evaluated bug handling procedure is a key

learning. The technology allowed the

administrator to build projects and assign defects

to staff members based on their expertise,

ensuring the best people addressed difficulties.

Allocating bugs by experience maximized bug

fixing and software problem resolution.

The extensive bug reports from developers and

management were very useful. Bug tracking and

prioritizing were made easier with ticket type,

status, and priority information. More visibility

helped project managers allocate resources and

prioritize problem solutions. Effective bug testing

and analysis are also enabled by technology.

Assignment to developers and management

guaranteed that faults were thoroughly researched

and studied by all. This helps one grasp the root

causes of the problems, enabling targeted bug-

2163 JNAO Vol. 15, Issue. 1, No.15 : 2024

fixing tactics. Thus, the strategy enhanced

software quality and problem fixes.

Centralization also increased teamwork and

communication. The bug management platform

enabled openness and information exchange.

Team members may ensure timely bug patches,

stay updated on bug statuses, and contribute on

problem-solving. Improved system cooperation

and communication made bug-resolution faster

and easier. Evaluation results confirm how

successfully the present bug control method fixes

issues and improves program quality. The

system's ability to speed problem allocation,

capture detailed issue reports, simplify bug testing

and analysis, and foster teamwork highlights its

bug management potential. These findings show

that the system is needed to improve software

development processes and advance bug

management and software quality assurance

studies.

5. CONCLUSION

This work found a post-deployment bug

management technique for software systems,

boosting stability and reliability and reducing

development and administrative costs. This work

produces BugTracker, a web-based software

system defect tracking and control tool.

BugTracker's entire software bug repository

streamlines problem tracking, removal, and

optimization. It gives software quality researchers

a tool to improve software quality, predict and

solve future issues, and streamline software

development. According to research, a well-

planned post-deployment approach can boost user

confidence, lower development costs, and

improve software system dependability.

Brain Bench Technologies and Diva Soft relied on

Bug Tracker for software development and

maintenance. A comprehensive bug-data

collecting led software development process

improvements. Iterative interaction with Bug

Tracker data helped developers and software

testers understand program processes, particularly

control and data flow responsible for failures. This

finally reduced software development expenses

and increased customer satisfaction by boosting

program stability and dependability.

REFERENCES

1. Lee, J., & Kim, D. (2024). "A Survey of

Software Bug Detection Techniques in Modern

Software Development." International Journal

of Software Engineering and Applications,

14(2), 55-70.

2. Singh, A., & Sharma, R. (2023). "Analyzing

the Impact of Automated Testing on Software

Bug Detection." Journal of Software

Maintenance and Evolution, 35(9), e20212.

3. Zhang, Y., & Li, X. (2022). "Deep Learning

Approaches to Detecting Software Bugs: A

Comprehensive Review." Software Testing,

Verification & Reliability, 32(5), e2043.

4. Miller, A., & Watson, T. (2021). "Fixing and

Preventing Software Bugs: A Framework for

Effective Debugging." Software Engineering

Journal, 42(4), 233-245.

5. Johnson, P., & Smith, J. (2021). "Exploring the

Role of AI in Software Bug Detection and

Fixing." Journal of Artificial Intelligence and

Software Engineering, 19(1), 40-59.

6. Sutherland, M., & Thompson, K. (2021).

"Automated Bug Fixing in Software: Trends

and Challenges." International Journal of

Computer Science and Software Engineering,

27(7), 17-34.

7. Wang, T., & Liu, S. (2021). "Bug Detection

Techniques in Cloud-Based Software

Systems." Journal of Cloud Computing and

Software Engineering, 20(3), 77-89.

8. Kumar, R., & Agarwal, P. (2020). "A Hybrid

Approach for Software Bug Prediction and

Resolution." International Journal of Software

Engineering and Knowledge Engineering,

34(10), 1-16.

9. Gonzalez, E., & Martin, J. (2020). "Impact of

Code Complexity on Software Bug Detection:

A Data-Driven Approach." Journal of Software

Quality Assurance, 43(6), 98-115.

10. Chavez, S., & Lopez, M. (2020). "The

Evolution of Bug Fixing Algorithms in Modern

Software Systems." Software Engineering

Research and Practice, 27(4), 155-171.

11. Patel, A., & Rao, S. (2020). "Machine Learning

Models for Early Detection of Software Bugs

in Large-Scale Systems." Journal of Software

2164 JNAO Vol. 15, Issue. 1, No.15 : 2024

Systems and Development, 18(8), 41-59.

12. Zhao, X., & Liu, C. (2020). "Exploring Static

Analysis for Efficient Bug Detection and

Fixing." Software Engineering Review, 25(12),

112-128.

13. Gupta, S., & Verma, K. (2020). "A

Comparative Research of Static and Dynamic

Analysis for Bug Detection in Software."

Software Testing Journal, 33(2), 67-82.

14. Tan, W., & Yang, H. (2020). "Using Machine

Learning for Automated Bug Fixing in Open-

Source Software." Journal of Open-Source

Software Engineering, 16(4), 89-104.

